Exposure to an environmental neurotoxicant hastens the onset of amyotrophic lateral sclerosis-like phenotype in human Cu2+/Zn2+ superoxide dismutase 1 G93A mice: glutamate-mediated excitotoxicity.
نویسندگان
چکیده
Mice expressing the human Cu(2+)/Zn(2+) superoxide dismutase 1 (hSOD1) gene mutation (hSOD1(G93A); G93A) were exposed to methylmercury (MeHg) at concentrations that did not cause overt motor dysfunction. We hypothesized that low concentrations of MeHg could hasten development of the amyotrophic lateral sclerosis (ALS)-like phenotype in G93A mice. MeHg (1 or 3 ppm/day in drinking water) concentration-dependently accelerated the onset of rotarod failure in G93A, but not wild-type, mice. At the time of rotarod failure, MeHg increased Fluo-4 fluorescence (free intracellular calcium concentration [Ca(2+)](i)) in soma of brainstem-hypoglossal nucleus. These motor neurons control intrinsic and some extrinsic tongue function and exhibit vulnerability in bulbar-onset ALS. The α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainic acid receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione reduced [Ca(2+)](i) in all G93A mice, irrespective of MeHg treatment. N-acetyl spermine, which antagonizes Ca(2+)-permeable AMPA receptors, further reduced [Ca(2+)](i) more effectively in MeHg-treated than untreated G93A mice, suggesting that MeHg-treated mice have a greater Ca(2+)-permeable AMPA receptor contribution. The non-Ca(2+) divalent cation chelator N,N,N',N'-tetrakis(pyridylmethyl)ethylenediamine reduced Fluo-4 fluorescence in all G93A mice; FluoZin-(Zn(2+) indicator) fluorescence was increased in all MeHg-treated mice. Thus in G93A mice Zn(2+) apparently contributed measurably to the MeHg-induced effect. This is the initial demonstration of accelerated onset of ALS-like phenotype in a genetically susceptible organism by exposure to low concentrations of an environmental neurotoxicant. Increased [Ca(2+)](i) induced by the G93A-MeHg interaction apparently was associated with Ca(2+)-permeable AMPA receptors and may contribute to the hastened development of ALS-like phenotypes by subjecting motor neurons to excessive elevation of [Ca(2+)](i), leading to excitotoxic cell death.
منابع مشابه
Exposure to an Environmental Neurotoxicant Hastens the Onset of Amyotrophic Lateral Sclerosis-Like Phenotype in Human Cu /Zn Superoxide Dismutase 1 G93A Mice: Glutamate-Mediated Excitotoxicity
Mice expressing the human Cu /Zn superoxide dismutase 1 (hSOD1) gene mutation (hSOD1; G93A) were exposed to methylmercury (MeHg) at concentrations that did not cause overt motor dysfunction. We hypothesized that low concentrations of MeHg could hasten development of the amyotrophic lateral sclerosis (ALS)-like phenotype in G93A mice. MeHg (1 or 3 ppm/day in drinking water) concentration-depende...
متن کاملKnocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. We recently demonstrated ...
متن کاملPhenotype of Transgenic Mice Carrying a Very Low Copy Number of the Mutant Human G93A Superoxide Dismutase-1 Gene Associated with Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS) with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1). There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation ...
متن کاملThe mitochondrial calcium regulator cyclophilin D is an essential component of oestrogen-mediated neuroprotection in amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder that is more prevalent in males than in females. A similar gender difference has been reported in some strains of transgenic mouse models of familial amyotrophic lateral sclerosis harbouring the G93A mutation in CuZn superoxide dismutase. Mitochondrial damage caused by pathological alterations in Ca(2+) accumulation is fr...
متن کاملExpression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis.
A common cause of amyotrophic lateral sclerosis (ALS) is mutations in the gene encoding superoxide dismutase-1. There is evolving circumstantial evidence that the wild-type protein can also be neurotoxic and that it may more generally be involved in the pathogenesis of ALS. To test this proposition more directly, we generated mice that express wild-type human superoxide dismutase-1 at a rate cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 338 2 شماره
صفحات -
تاریخ انتشار 2011